[Python/파이썬] Numpy Pandas Matplotlib Seaborn Sklearn - 3. 신용등급 MinMaxScaler plot
1. 엑셀 파일 불러오기 # 패키지 선언 import numpy as npimport matplotlib import pandas as pd import matplotlib import matplotlib.pyplot as plt from matplotlib import font_manager, rc import seaborn as sns from sklearn.preprocessing import MinMaxScaler # TC_EN_AREA_CRISIS_INFO.csv 분기별 데이터 추출 및 변환 코드 df1=pd.read_excel('C:/fintech6/_project1/_src/sample_01.xlsx', index_col=0) # 2020-1Q df2=pd.read_excel('C:/fintech6/_project1/_src/sample_02.xlsx', index_col=0) # 2020-2Q df3=pd.read_excel('C:/fintech6/_project1/_src/sample_03.xlsx', index_col=0) # 2020-3Q *TC_EN_AREA_CRISIS_INFO_sample(신용등급).csv ( 출처: 경기지역경제포털, KED신용등급, https://bigdata-region.kr/#/dataset/6f393bec-a1e1-4e09-8075-8c53e19d51f5) 2. 업종코드 선택 # I : 숙박 및 음식점업 code1 = df1['INDUTY_LCLAS_CODE'] == 'I' df_code1=df1[code1] code2 = df2['INDUTY_LCLAS_CODE'] == 'I' df_code2=df2[code2] code3 = df3['INDUTY_LCLAS_CODE'] == 'I' df_code3=df3[code3] 3. 신용등급 구간별(A등급/B등급/C등급/D등급) 합계 li...