[Python/파이썬] LSTM pyupbit tensorflow keras sklearn - 2. LSTM 모델을 활용한 BITCOIN 예측

1. BITCOIN Dataset 불러오기 - pyupbit 사용 # 패키지선언 import os import pyupbit as py import pandas as pd import numpy as np import seaborn as sns import matplotlib import matplotlib.pyplot as plt ㅤ py . get_tickers ( fiat = 'USD' ) Output ['USDT-BTC', 'USDT-ETH', 'USDT-XRP', 'USDT-ETC', 'USDT-OMG', 'USDT-ADA', 'USDT-TUSD', 'USDT-SC', 'USDT-TRX', 'USDT-BCH', 'USDT-DGB', 'USDT-DOGE', 'USDT-ZRX', 'USDT-RVN', 'USDT-BAT'] ㅤ py.get_current_price(['USDT-BTC','USDT-ETH']) Output {'USDT-BTC': 20878.37330684, 'USDT-ETH': 1225.49151905} ㅤ tickers = ['USDT-BTC','USDT-ETH','USDT-XRP','USDT-ADA','USDT-LTC'] interval = 'minute60' ㅤ from tqdm import tqdm coin_set = [] for ticker in tqdm(tickers): coin = py.get_ohlcv(ticker=ticker,count=20000,interval=interval,to='2022-01-01'...